RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Conversion of coastal marshes to croplands decreases organic carbon but increases inorganic carbon in saline soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Conversion of coastal marshes to croplands decreases organic carbon but increases inorganic carbon in saline soils

0 Datasets

0 Files

English
2020
Land Degradation and Development
Vol 31 (9)
DOI: 10.1002/ldr.3538

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Yuanshan Zhu
Yidong Wang
Chuanyong Guo
+8 more

Abstract

Over the past century, conversion to agriculture has greatly reduced the global extent of coastal wetlands leading to degradation and loss of these ecosystems. However, it remains unclear how this land conversion affects the confluent soil organic and inorganic carbon (SOC and SIC) storage as well as their localizations in soil matrix. Here, we investigated these issues using wet sieving at two coastal saline–alkali sites in northern China. Conversion of marshes to cropland (>60 years) decreased the portion of large macroaggregates (>2 mm) and correspondingly increased the portion of microaggregates (0.053–0.25 mm) at both sites. Land conversion decreased SOC contents by 31–67% in all fractions (>2, 0.25–2, 0.053–0.25, and <0.053 mm) in the topsoil (0–15 cm) and subsoil (15–30 cm). In contrast, irrigation‐ and NH 4 HCO 3 fertilization‐derived carbonates increased SIC storages in almost all fractions due to the saline–alkali soil conditions, especially for the subsoil. This increases in SIC almost offset and compensate for the SOC losses at both sites. Consequently, the irrigation‐ and NH 4 HCO 3 ‐induced SIC accumulation should be included in the full C balance of saline–alkali soils. It should be noted, however, that the progressive loss of SOC due to cultivation will lead to soil degradation in fertility and ecological function, thereby hampering long‐term sustainability of coastal ecosystems. Therefore, the compensation of SIC for the loss of SOC is not sustainable in the longer term.

How to cite this publication

Yuanshan Zhu, Yidong Wang, Chuanyong Guo, Dongmei Xue, Jun Li, Qing Chen, Zhaoliang Song, Yilai Lou, Yakov Kuzyakov, Zhong‐Liang Wang, Davey L Jones (2020). Conversion of coastal marshes to croplands decreases organic carbon but increases inorganic carbon in saline soils. Land Degradation and Development, 31(9), pp. 1099-1109, DOI: 10.1002/ldr.3538.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Land Degradation and Development

DOI

10.1002/ldr.3538

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access