0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work some relevant processes for the preparation of liquid hydrocarbon fuels and fuel additives from cellulose, hemicellulose and triglycerides derived platform molecules are discussed. Thus, it is shown that a series of platform molecules such as levulinic acid, furans, fatty acids and polyols can be converted into a variety of fuel additives through catalytic transformations that include reduction, esterification, etherification, and acetalization reactions. Moreover, we will show that liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenolysis, hydrogenation, decarbonylation/descarboxylation etc.) with the adjustment of the molecular weight via C–C coupling reactions (e.g. aldol condensation, hydroxyalkylation, oligomerization, ketonization) of the reactive platform molecules.
María J. Climent, Avelino Avelino, Sara Iborra (2013). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), pp. 516-516, DOI: 10.1039/c3gc41492b.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Green Chemistry
DOI
10.1039/c3gc41492b
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access