RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Contrasting drivers of community‐level trait variation for vascular plants, lichens and bryophytes across an elevational gradient

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Contrasting drivers of community‐level trait variation for vascular plants, lichens and bryophytes across an elevational gradient

0 Datasets

0 Files

English
2019
Functional Ecology
Vol 33 (12)
DOI: 10.1111/1365-2435.13454

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
David A. Wardle
David A. Wardle

Umeå University

Verified
Ruben E. Roos
Kristel van Zuijlen
Tone Birkemoe
+5 more

Abstract

Across environmental gradients, community‐level functional traits of plants can change due to species turnover, intraspecific variation and their covariation. Studies on vascular plants suggest that species turnover is the main driver of trait variation across gradients, although intraspecific variation can also be important. However, there is limited knowledge about whether this holds for non‐vascular primary producers such as lichens and bryophytes. We hypothesized that intraspecific variation is more important for non‐vascular than for vascular primary producers because they lack specialized structures to maintain homeostasis and should therefore be more responsive to extrinsic factors. To assess the relative importance of species turnover versus intraspecific variation for vascular plants, lichens and bryophytes, we estimated species abundance and measured chemical (tissue nitrogen (N) and phosphorous (P) content, N:P ratio and pH) and non‐chemical (specific leaf or thallus area, dry matter content and water holding capacity) functional traits along an elevational gradient in alpine southern Norway. We calculated community‐weighted mean traits and quantified the relative contribution of species turnover, intraspecific variation and their covariation to total trait variation across the gradient. We found mixed support for our hypothesis: the contribution of intraspecific variation to total trait variation for N and N:P was higher in lichens than in vascular plants and bryophytes, but in general the contribution of intraspecific variation differed among functional traits and producer groups. Nutrient variables (N, P and N:P) were significantly impacted by intraspecific variation for vascular plants and lichens but not for bryophytes. Non‐chemical traits and pH were mainly driven by species turnover effects in all primary producer groups. Our results highlight that while nearly all studies on primary producer trait variation across environments have focused on vascular plants, trait variation of other largely neglected but ecologically important producer groups, such as lichens and bryophytes, may show very different responses to the same environmental factors. In order to fully understand how future environmental changes impact on community‐ and ecosystem‐level processes, traits of primary producers other than vascular plants—and their within‐species variation—need to be considered in systems where these groups are abundant. A free Plain Language Summary can be found within the Supporting Information of this article.

How to cite this publication

Ruben E. Roos, Kristel van Zuijlen, Tone Birkemoe, Kari Klanderud, Simone I. Lang, Stef Bokhorst, David A. Wardle, Johan Asplund (2019). Contrasting drivers of community‐level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Functional Ecology, 33(12), pp. 2430-2446, DOI: 10.1111/1365-2435.13454.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Functional Ecology

DOI

10.1111/1365-2435.13454

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access