RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Continuous Production of Carbon-Supported and Surfactant-Free Pt-M (M=Fe, Co, Ni, and Cu) Nanocrystals for Catalyzing Oxygen Reduction

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Continuous Production of Carbon-Supported and Surfactant-Free Pt-M (M=Fe, Co, Ni, and Cu) Nanocrystals for Catalyzing Oxygen Reduction

0 Datasets

0 Files

en
2022
Vol 169 (12)
Vol. 169
DOI: 10.1149/1945-7111/aca938

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Minghao Xie
Yifeng Shi
Ruhui Chen
+2 more

Abstract

Scalable production of carbon-supported Pt-M (M=Co, Ni, and Fe) alloy nanocrystals is of great importance for their practical application as catalysts towards the oxygen reduction reaction (ORR), a process key to the operation of proton-exchange membrane fuel cells. Here we report the use of a fluidic device for the in situ nucleation and growth of Pt-M nanocrystals on a commercial carbon support in a continuous and scalable fashion. The use of dimethylformamide not only enables well dispersion of the carbon powders for the creation of a homogeneous reaction mixture but also helps reduce metal precursors for the heterogeneous nucleation and growth of nanocrystals on the carbon surface. The size, shape, and composition of the nanocrystals can all be tuned by changing the metal precursors added into the reaction mixture, resulting in Pt-M nanocrystals uniformly distributed across the surface of the carbon support. Among the nanocrystals, the carbon-supported Pt-Co nanocrystals show the highest ORR specific and mass activities at 0.9 V, demonstrating 11.4- and 8.8-fold enhancements over the state-of-the-art commercial Pt/C catalyst.

How to cite this publication

Minghao Xie, Yifeng Shi, Ruhui Chen, Min Shen, Younan Xia (2022). Continuous Production of Carbon-Supported and Surfactant-Free Pt-M (M=Fe, Co, Ni, and Cu) Nanocrystals for Catalyzing Oxygen Reduction. , 169(12), DOI: https://doi.org/10.1149/1945-7111/aca938.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1149/1945-7111/aca938

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access