0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn virtualized radio access network (vRAN), the base station (BS) functions are decomposed into virtualized components that can be hosted at the centralized unit or distributed units through functional splits. Such flexibility has many benefits; however, it also requires solving the problem of finding the optimal splits of functions of the BSs in such a way that minimizes the total network cost. The underlying vRAN system is complex and precise modelling of it is not trivial. Formulating the functional split problem to minimize the cost results in a combinatorial problem that is provably NP-hard, and solving it is computationally expensive. In this paper, a constrained deep reinforcement learning (RL) approach is proposed to solve the problem with minimal assumptions about the underlying system. Since in deep RL, the action selection is the outcome of inference of a neural network, it can be done in real-time while training to update the neural networks can be done in the background. However, since the problem is combinatorial, even for a small number of functions, the action space of the RL problem becomes large. Therefore, to deal with such a large action space, a chain rule-based stochastic policy is exploited in which a long short-term memory (LSTM) network-based sequence-to-sequence model is applied to estimate the policy that is selecting the functional split actions. However, the utilized policy is still limited to an unconstrained problem, and each split decision is bounded by vRAN's constraint requirements. Hence, a constrained policy gradient method is leveraged to train and guide the policy toward constraint satisfaction. Further, a search strategy by greedy decoding or temperature sampling is utilized to improve the optimality performance at the test time. Simulations are performed to evaluate the performance of the proposed solution using synthetic and real network datasets.
Fahri Wisnu Murti, Samad Ali, Matti Latva-aho (2022). Constrained Deep Reinforcement Based Functional Split Optimization in Virtualized RANs. IEEE Transactions on Wireless Communications, 21(11), pp. 9850-9864, DOI: 10.1109/twc.2022.3179811.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Wireless Communications
DOI
10.1109/twc.2022.3179811
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access