0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessClimate warming threatens global food security by exacerbating pressures on degraded soils under intensive crop production. Conservation agriculture is promoted as a sustainable solution that improves soil health and sustains crop yields in a changing climate, but these benefits may be affected by long-term warming. Here, we investigate the effects of conservation agriculture compared to conventional agriculture on 17 soil properties, microbial diversity and crop yields, during eight-years' experimental warming. An overall positive effect of warming on soil health over time under conservation agriculture is characterized by linear increases in soil organic carbon and microbial biomass carbon. Warming-triggered shifts in microbial biomass carbon and fungal diversity (saprogen richness) are directly linked to a 9.3% increase in wheat yields over eight years, but only under conservation agriculture. Overall, conservation agriculture results in an average 21% increase in soil health and supports similar levels of crop production after long-term warming compared to conventional agriculture. Our work provides insights into the potential benefits of conservation agriculture for long-term sustainable food production because improved soil health improves resilience to the effects of climate warming.
Jialing Teng, Ruixing Hou, Jennifer A. J. Dungait, Guiyao Zhou, Yakov Kuzyakov, Jingbo Zhang, Jing Tian, Zhenling Cui, Fusuo Zhang, Manuel Delgado‐Baquerizo (2024). Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nature Communications, 15(1), DOI: 10.1038/s41467-024-53169-6.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Nature Communications
DOI
10.1038/s41467-024-53169-6
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access