0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis technical note studies the consensus problem for cooperative agents with nonlinear dynamics in a directed network. Both local and global consensus are defined and investigated. Techniques for studying the synchronization in such complex networks are exploited to establish various sufficient conditions for reaching consensus. The local consensus problem is first studied via a combination of the tools of complex analysis, local consensus manifold approach, and Lyapunov methods. A generalized algebraic connectivity is then proposed to study the global consensus problem in strongly connected networks and also in a broad class of networks containing spanning trees, for which ideas from algebraic graph theory, matrix theory, and Lyapunov methods are utilized.
Wenwu Yu, Guanrong Chen, Ming Cao (2011). Consensus in Directed Networks of Agents With Nonlinear Dynamics. IEEE Transactions on Automatic Control, 56(6), pp. 1436-1441, DOI: 10.1109/tac.2011.2112477.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Automatic Control
DOI
10.1109/tac.2011.2112477
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access