0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe mechanisms underlying anesthesia-induced loss of consciousness remain a matter of debate. Recent electrophysiological reports suggest that while initial propofol infusion provokes an increase in fast rhythms (from beta to gamma range), slow activity (from delta to alpha range) rises selectively during loss of consciousness. Dynamic causal modeling was used to investigate the neural mechanisms mediating these changes in spectral power in humans. We analyzed source-reconstructed data from frontal and parietal cortices during normal wakefulness, propofol-induced mild sedation, and loss of consciousness. Bayesian model selection revealed that the best model for explaining spectral changes across the three states involved changes in corticothalamic interactions. Compared with wakefulness, mild sedation was accounted for by an increase in thalamic excitability, which did not further increase during loss of consciousness. In contrast, loss of consciousness per se was accompanied by a decrease in backward corticocortical connectivity from frontal to parietal cortices, while thalamocortical connectivity remained unchanged. These results emphasize the importance of recurrent corticocortical communication in the maintenance of consciousness and suggest a direct effect of propofol on cortical dynamics.
Mélanie Boly, Rosalyn Moran, Michael Murphy, Pierre Boveroux, Marie‐Aurélie Bruno, Quentin Noirhomme, Didier Ledoux, Vincent Bonhomme, Jean-François Brichant, Giulio Tononi, Steven Laureys, Karl Friston (2012). Connectivity Changes Underlying Spectral EEG Changes during Propofol-Induced Loss of Consciousness. Journal of Neuroscience, 32(20), pp. 7082-7090, DOI: 10.1523/jneurosci.3769-11.2012.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Journal of Neuroscience
DOI
10.1523/jneurosci.3769-11.2012
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access