0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessElectronic waste carries energetic costs and an environmental burden rivaling that of plastic waste due to the rarity and toxicity of the heavy‐metal components. Recyclable conductive composites are introduced for printed circuits formulated with polycaprolactone (PCL), conductive fillers, and enzyme/protectant nanoclusters. Circuits can be printed with flexibility (breaking strain ≈80%) and conductivity (≈2.1 × 10 4 S m −1 ). These composites are degraded at the end of life by immersion in warm water with programmable latency. Approximately 94% of the functional fillers can be recycled and reused with similar device performance. The printed circuits remain functional and degradable after shelf storage for at least 7 months at room temperature and one month of continuous operation under electrical voltage. The present studies provide composite design toward recyclable and easily disposable printed electronics for applications such as wearable electronics, biosensors, and soft robotics.
Junpyo Kwon, Christopher DelRe, Philjun Kang, Aaron Hall, Daniel P. Arnold, Ivan Jayapurna, Le Ma, Matthew Michalek, Robert O. Ritchie, Ting Xu (2022). Conductive Ink with Circular Life Cycle for Printed Electronics. Advanced Materials, 34(30), DOI: 10.1002/adma.202202177.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Advanced Materials
DOI
10.1002/adma.202202177
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access