0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe extensive research focusing on fluorescent organic dyes for bioimaging has made this in vivo method available for a diverse range of applications. One way to enhance this method is to tune the absorption and emission wavelengths of dyes to the near-infrared region where better light penetration and imaging resolution can be achieved. For this purpose, the well-known BODIPY dyes and their derivatives called aza-BODIPY have been the subject of extensive synthetic efforts. The interest in these systems stems from their excellent photophysical properties. Despite numerous studies, the rational design of near-infrared active dyes with desirable properties remains difficult. Here, we present a new wave function-based method for modeling excited states of large molecules, which has numerous theoretical advantages over the most commonly used electronic structure methods. This method is employed to suggest candidates for new dyes with the desired properties and to predict the absorption and fluorescence maxima and luminescence spectra of aza-BODIPY dyes with possible applications in fluorescence imaging.
Romain Berraud‐Pache, Frank Neese, Giovanni Bistoni, Róbert Izsák (2019). Computational Design of Near-Infrared Fluorescent Organic Dyes Using an Accurate New Wave Function Approach. The Journal of Physical Chemistry Letters, 10(17), pp. 4822-4828, DOI: 10.1021/acs.jpclett.9b02240.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
The Journal of Physical Chemistry Letters
DOI
10.1021/acs.jpclett.9b02240
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access