RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Compressive-Sensing-Based Structure Identification for Multilayer Networks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Compressive-Sensing-Based Structure Identification for Multilayer Networks

0 Datasets

0 Files

English
2017
IEEE Transactions on Cybernetics
Vol 48 (2)
DOI: 10.1109/tcyb.2017.2655511

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guanrong Chen
Guanrong Chen

City University Of Hong Kong

Verified
Guofeng Mei
Xiaoqun Wu
Yingfei Wang
+3 more

Abstract

The coexistence of multiple types of interactions within social, technological, and biological networks has motivated the study of the multilayer nature of real-world networks. Meanwhile, identifying network structures from dynamical observations is an essential issue pervading over the current research on complex networks. This paper addresses the problem of structure identification for multilayer networks, which is an important topic but involves a challenging inverse problem. To clearly reveal the formalism, the simplest two-layer network model is considered and a new approach to identifying the structure of one layer is proposed. Specifically, if the interested layer is sparsely connected and the node behaviors of the other layer are observable at a few time points, then a theoretical framework is established based on compressive sensing and regularization. Some numerical examples illustrate the effectiveness of the identification scheme, its requirement of a relatively small number of observations, as well as its robustness against small noise. It is noteworthy that the framework can be straightforwardly extended to multilayer networks, thus applicable to a variety of real-world complex systems.

How to cite this publication

Guofeng Mei, Xiaoqun Wu, Yingfei Wang, Hu Mi, Jun-an Lu, Guanrong Chen (2017). Compressive-Sensing-Based Structure Identification for Multilayer Networks. IEEE Transactions on Cybernetics, 48(2), pp. 754-764, DOI: 10.1109/tcyb.2017.2655511.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Cybernetics

DOI

10.1109/tcyb.2017.2655511

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access