0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBiochar (BC) and nitrogen (N) fertilizers are frequently applied to improve soil properties and increase crop productivity. Nonetheless, our mechanistic understanding of plant-soil interactions under single or combined application of BC and N remains incomplete. For the first time, we applied a split-root system to evaluate how BC or N contributes to the changes in soil enzyme activities, N and phosphorus (P) cycling as well as root plasticity. Left and right parts of rhizoboxes were filled with silty-clay loamy soil amended with BC (15 g kg−1 soil, from wheat straw, 300 °C), N (0.05 g KNO3-N kg−1 soil) or a control (no amendments), resulting in the following combinations: BC/Control, N/Control, BC/N. Soil enzyme activities, available N and P, root morphology and plant biomass were analyzed after plant harvest. Plant biomass (shoot + root) ranged from 0.56 g pot−1 (BC/Control) to 0.91 g pot−1(BC/N). The decreased soil bulk density and increased P availability in the BC compartment (BC/Control and BC/N) stimulated root length by 1.4–1.8 times – an effect that was independent of N availability in the same rhizobox. Biochar stimulated activities of β-glucosidase and leucine aminopeptidase (by 33–39%) compared to N due to the coupling of C, N and P cycles in BC/N treated soil. Nitrogen fertilization also increased β-glucosidase activity compared to the unfertilized control, whereas root elongation remained unaffected. Thus, the combined application of BC/N had more efficient benefits for plant growth than BC or N alone. This is linked with i) the stimulation of enzyme activities at the BC locations to reduce N limitation for both microorganisms and plants, and ii) an increase of fine root production to improve N uptake efficiency. Thus, combined BC/N application is potentially especially sustainable to overcome nutrient limitation as well as to maintain crop productivity because it accelerates root-microbial interactions.
Xiaona Song, Bahar S. Razavi, Bernard Ludwig, Kazem Zamanian, Huadong Zang, Yakov Kuzyakov, Michaela Dippold, Anna Gunina (2020). Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. The Science of The Total Environment, 735, pp. 139393-139393, DOI: 10.1016/j.scitotenv.2020.139393.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2020.139393
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access