0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCollective motion is ubiquitous in nature; groups of animals, such as fish, birds, and ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that ranges from directed movement to milling to disordered swarming. Typically, such macroscopic patterns arise from decentralized, local interactions among constituent components (e.g., individual fish in a school). Preeminent models of this process describe individuals as self-propelled particles, subject to self-generated motion and “social forces” such as short-range repulsion and long-range attraction or alignment. However, organisms are not particles; they are probabilistic decision-makers. Here, we introduce an approach to modeling collective behavior based on active inference. This cognitive framework casts behavior as the consequence of a single imperative: to minimize surprise. We demonstrate that many empirically observed collective phenomena, including cohesion, milling, and directed motion, emerge naturally when considering behavior as driven by active Bayesian inference—without explicitly building behavioral rules or goals into individual agents. Furthermore, we show that active inference can recover and generalize the classical notion of social forces as agents attempt to suppress prediction errors that conflict with their expectations. By exploring the parameter space of the belief-based model, we reveal nontrivial relationships between the individual beliefs and group properties like polarization and the tendency to visit different collective states. We also explore how individual beliefs about uncertainty determine collective decision-making accuracy. Finally, we show how agents can update their generative model over time, resulting in groups that are collectively more sensitive to external fluctuations and encode information more robustly.
Conor Heins, Beren Millidge, Lancelot Da Costa, Richard P. Mann, Karl Friston, Iain D. Couzin (2024). Collective behavior from surprise minimization. , 121(17), DOI: https://doi.org/10.1073/pnas.2320239121.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1073/pnas.2320239121
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access