0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOverlaying low-power, low-cost, femtocells, over existing wireless networks has recently emerged as a means to significantly improve the coverage and performance of next-generation wireless networks. While most existing literature focuses on spectrum sharing and interference management among non-cooperative femtocells, in this paper, we propose a novel cooperative model that enables the femtocells to improve their performance by sharing spectral resources, minimizing the number of collisions, and maximizing the spatial reuse. We model the femtocell spectrum sharing problem as a coalitional game in partition form and we propose a distributed algorithm for coalition formation. Using the proposed algorithm, the femtocells can take autonomous decisions to cooperate and self-organize into a network partition composed of disjoint femtocell coalitions and that constitutes a stable partition which lies in the recursive core of the considered game. Whenever a coalition forms, the femtocells inside this coalition can cooperatively pool the occupied spectral resources. Additionally, the members of any given coalition jointly schedule their transmissions in order to avoid collisions, in a distributed way. Simulation results show that the proposed coalition formation algorithm yields a performance advantage, in terms of the average payoff (rate) per femtocell reaching up to 380% relative to the non-cooperative case.
Francesco Pantisano, Mehdi Bennis, Walid Saad, Roberto Verdone, Matti Latva-aho (2011). Coalition formation games for femtocell interference management: A recursive core approach. IEEE Wireless Communications and Networking Conference, 24?26, pp. 1161-1166, DOI: 10.1109/wcnc.2011.5779295.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Wireless Communications and Networking Conference
DOI
10.1109/wcnc.2011.5779295
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access