RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Classification-based prediction of network connectivity robustness

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Classification-based prediction of network connectivity robustness

0 Datasets

0 Files

English
2022
Neural Networks
Vol 157
DOI: 10.1016/j.neunet.2022.10.013

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guanrong Chen
Guanrong Chen

City University Of Hong Kong

Verified
Yang Lou
Ruizi Wu
Junli Li
+3 more

Abstract

Today, there is an increasing concern about malicious attacks on various networks in society and industry, against which the network robustness is critical. Network connectivity robustness, in particular, is of fundamental importance, which is generally measured by a sequence of calculated values that indicate the connectedness of the remaining network after a sequence of attacks by means of node- or edge-removal. It is computationally time-consuming, however, to measure and evaluate the network connectivity robustness using the conventional attack simulations, especially for large-scale networked systems. In the present paper, an efficient robustness predictor based on multiple convolutional neural networks (mCNN-RP) is proposed for predicting the network connectivity robustness, which is an natural extension of the single CNN-based predictor. In mCNN-RP, one CNN works as the classifier, while each of the rest CNNs works as an estimator for predicting the connectivity robustness of every classified network category. The network categories are classified according to the available prior knowledge. A data-based filter is installed for predictive data refinement. Extensive experimental studies on both synthetic and real-world networks, including directed and undirected as well as weighted and unweighted topologies, verify the effectiveness of mCNN-RP. The results demonstrate that the average prediction error is lower than the standard deviation of the tested data, which outperforms the single CNN-based framework. The runtime in assessing network connectivity robustness is significantly reduced by using the CNN-based technique. The proposed mCNN-RP not only can accurately predict the connectivity robustness of various complex networks, but also provides an excellent indicator for the connectivity robustness, better than other existing prediction measures.

How to cite this publication

Yang Lou, Ruizi Wu, Junli Li, Lin Wang, Changbing Tang, Guanrong Chen (2022). Classification-based prediction of network connectivity robustness. Neural Networks, 157, pp. 136-146, DOI: 10.1016/j.neunet.2022.10.013.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Neural Networks

DOI

10.1016/j.neunet.2022.10.013

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access