0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn Friston et al. ((2002) Neuroimage 16: 465–483) we introduced empirical Bayes as a potentially useful way to estimate and make inferences about effects in hierarchical models. In this paper we present a series of models that exemplify the diversity of problems that can be addressed within this framework. In hierarchical linear observation models, both classical and empirical Bayesian approaches can be framed in terms of covariance component estimation (e.g., variance partitioning). To illustrate the use of the expectation–maximization (EM) algorithm in covariance component estimation we focus first on two important problems in fMRI: nonsphericity induced by (i) serial or temporal correlations among errors and (ii) variance components caused by the hierarchical nature of multisubject studies. In hierarchical observation models, variance components at higher levels can be used as constraints on the parameter estimates of lower levels. This enables the use of parametric empirical Bayesian (PEB) estimators, as distinct from classical maximum likelihood (ML) estimates. We develop this distinction to address: (i) The difference between response estimates based on ML and the conditional means from a Bayesian approach and the implications for estimates of intersubject variability. (ii) The relationship between fixed- and random-effect analyses. (iii) The specificity and sensitivity of Bayesian inference and, finally, (iv) the relative importance of the number of scans and subjects. The forgoing is concerned with within- and between-subject variability in multisubject hierarchical fMRI studies. In the second half of this paper we turn to Bayesian inference at the first (within-voxel) level, using PET data to show how priors can be derived from the (between-voxel) distribution of activations over the brain. This application uses exactly the same ideas and formalism but, in this instance, the second level is provided by observations over voxels as opposed to subjects. The ensuing posterior probability maps (PPMs) have enhanced anatomical precision and greater face validity, in relation to underlying anatomy. Furthermore, in comparison to conventional SPMs they are not confounded by the multiple comparison problem that, in a classical context, dictates high thresholds and low sensitivity. We conclude with some general comments on Bayesian approaches to image analysis and on some unresolved issues.
Karl Friston, Daniel E. Glaser, Richard N. Henson, Stefan J. Kiebel, Christophe Phillips, John Ashburner (2002). Classical and Bayesian Inference in Neuroimaging: Applications. NeuroImage, 16(2), pp. 484-512, DOI: 10.1006/nimg.2002.1091.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2002
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
NeuroImage
DOI
10.1006/nimg.2002.1091
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access