0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe most important third generation (3G) cellular communications standard is based on wideband CDMA (WCDMA). Receivers based on TDMA style channel equalization at the chip level have been proposed for a WCDMA downlink employing long spreading sequences to ensure adequate performance even with a high number of active users. These receivers equalize the channel prior to despreading, thus restoring the orthogonality of users and resulting in multiple-access interference (MAI) suppression. In this paper, an overview of chip-level channel equalizers is delivered with special attention to adaptation methods suitable for the WCDMA downlink. Numerical examples on the equalizers′ performance are given in Rayleigh fading frequency-selective channels.
Kari Hooli, Markku Juntti, Markku J. Heikkilä, Petri Komulainen, Matti Latva-aho, J. Lilleberg (2002). Chip-Level Channel Equalization in WCDMA Downlink. EURASIP Journal on Advances in Signal Processing, 2002(8), DOI: 10.1155/s1110865702000914.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2002
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
EURASIP Journal on Advances in Signal Processing
DOI
10.1155/s1110865702000914
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access