0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe have studied the chemical transformations in ultrathin chalcogenide nanowires with an aim to understand the parameters that control the morphology and crystal structure of the product. Ultrathin Te nanowires were transformed into Ag2Te nanowires with preservation of the single crystallinity. The Ag2Te nanowires were then converted into CdTe, ZnTe, and PbTe using cation-exchange reactions, and the CdTe nanowires were further transformed into PtTe2 nanotubes. On the basis of the solubility products of the ionic solids, the crystal structures of the involved solids, the reaction kinetics, and the reaction conditions for transformations, we were able to reach the following conclusions: (i) The solubility products of ionic solids can be used as a rough criterion to predict if the transformation is thermodynamically favorable or not. (ii) The morphological preservation of reactant nanowires is more sensitive to the change in length rather than the total volume in addition to the lattice matching between the reactant and product nanowires. (iii) The crystal structure resulting from a transformation should be determined by the free energy of formation and the stability of the products. (iv) The transformation involving small volume change or topotactic lattice matching is considered homogeneous along the entire length of the nanowires, preserving both the single crystallinity and the morphology of the reactant nanowires.
Geon Dae Moon, Sungwook Ko, Younan Xia, Unyong Jeong (2010). Chemical Transformations in Ultrathin Chalcogenide Nanowires. , 4(4), DOI: https://doi.org/10.1021/nn9018575.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nn9018575
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access