0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCore-shell nanowires (NWs) composed of silicon (Si) and germanium (Ge) are key structures for realizing high mobility transistor channels, since the site-selective doping and band-offset in core-shell NWs separate the carrier transport region from the impurity doped region, resulting in the suppression of impurity scattering. Four different types of Si/Ge (i-Si/n-Ge, p-Si/i-Ge) and Ge/Si (n-Ge/i-Si, i-Ge/p-Si) core-shell NWs structures were rationally grown. The surface morphology significantly depended on the types of the core-shell NWs. Raman and X-ray diffraction (XRD) measurements clearly characterized the compressive and tensile stress in the core and shell regions. The observation of boron (B) and phosphorus (P) local vibrational peaks and the Fano effect clearly demonstrated that the B and P atoms are selectively doped into the shell and core regions and electrically activated in the substitutional sites, showing the success of site-selective doping.
Naoki Fukata, Masanori Mitome, Takashi Sekiguchi, Yoshio Bando, Melanie Kirkham, Jung‐Il Hong, Zhong Lin Wang, Robert L. Snyder (2012). Characterization of Impurity Doping and Stress in Si/Ge and Ge/Si Core–Shell Nanowires. , 6(10), DOI: https://doi.org/10.1021/nn302881w.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nn302881w
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access