0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUniversity of Geneva
Motivated by very recent experiments, we consider a scenario ``\`a la Bell'' in which two protagonists test the Clauser-Horne-Shimony-Holt (CHSH) inequality using a photon-pair source based on spontaneous parametric down conversion and imperfect photon detectors. The conventional wisdom says that (i) if the detectors have unit efficiency, the CHSH violation can reach its maximum quantum value of $2\sqrt{2}$. To obtain the maximal possible violation, it suffices that the source emits (ii) maximally entangled photon pairs (iii) in two well-defined single modes. Through a nonperturabive calculation of nonlocal correlations, we show that none of these statements are true. By providing the optimal pump parameters, measurement settings and state structure for any detection efficiency and dark count probability, our results give the recipe to close all the loopholes in a Bell test using photon pairs.
Valentina Caprara Vivoli, Pavel Sekatski, Jean-Daniel Bancal, Charles Ci Wen Lim, Bradley Christensen, Anthony Martin, Rob Thew, Hugo Zbinden, Nicolas Gisin, Nicolas Sangouard (2015). Challenging preconceptions about Bell tests with photon pairs. Physical Review A, 91(1), DOI: 10.1103/physreva.91.012107.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Physical Review A
DOI
10.1103/physreva.91.012107
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access