RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Cell-Free Massive MIMO with Radio Stripes for Indoor Wireless Energy Transfer.

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2021

Cell-Free Massive MIMO with Radio Stripes for Indoor Wireless Energy Transfer.

0 Datasets

0 Files

English
2021
arXiv (Cornell University)

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Onel L. Alcaraz López
Dileep Kumar
Richard Demo Souza
+3 more

Abstract

Radio frequency wireless energy transfer (WET) is a promising solution for powering autonomous IoT deployments. Recent works on WET have mainly focused on extremely low-power/cost IoT applications. However, trending technologies such as energy beamforming and waveform optimization, distributed and massive antenna systems, smart reflect arrays and reconfigurable metasurfaces, flexible energy transmitters, and mobile edge computing, may broaden WET applicability, and turn it plausible for powering more energy-hungry IoT devices. In this work, we specifically leverage energy beamforming for powering multiple user equipments (UEs) with stringent energy harvesting (EH) demands in an indoor cell-free massive MIMO. Based on semi-definite programming, successive convex approximation (SCA), and maximum ratio transmission (MRT) techniques, we derive optimal and sub-optimal precoders aimed at minimizing the radio stripes' transmit power while exploiting information of the power transfer efficiency of the EH circuits at the UEs. Moreover, we propose an analytical framework to assess and control the electromagnetic field (EMF) radiation exposure in the considered indoor scenario. Numerical results show that i) the EMF radiation exposure can be more easily controlled at higher frequencies at the cost of a higher transmit power consumption, ii) training is not a very critical factor for the considered indoor system, iii) MRT/SCA-based precoders are particularly appealing when serving a small number of UEs, thus, specially suitable for implementation in a time domain multiple access (TDMA) scheduling framework, and iv) TDMA is more efficient than spatial domain multiple access (SDMA) when serving a relatively small number of UEs. Results suggest that additional boosting performance strategies are needed to increase the overall system efficiency, thus making the technology viable in practice.

How to cite this publication

Onel L. Alcaraz López, Dileep Kumar, Richard Demo Souza, Petar Popovski, Antti Tölli, Matti Latva-aho (2021). Cell-Free Massive MIMO with Radio Stripes for Indoor Wireless Energy Transfer.. arXiv (Cornell University)

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access