0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe characterise the dynamics of neuronal activity, in terms of field theory, using neural units placed on a 2D-lattice modelling the cortical surface. The electrical activity of neuronal units was analysed with the aim of deriving a neural field model with a simple functional form that still able to predict or reproduce empirical findings. Each neural unit was modelled using a neural mass and the accompanying field theory was derived in the continuum limit. The field theory comprised coupled (real) Klein-Gordon fields, where predictions of the model fall within the range of experimental findings. These predictions included the frequency spectrum of electric activity measured from the cortex, which was derived using an equipartition of energy over eigenfunctions of the neural fields. Moreover, the neural field model was invariant, within a set of parameters, to the dynamical system used to model each neuronal mass. Specifically, topologically equivalent dynamical systems resulted in the same neural field model when connected in a lattice; indicating that the fields derived could be read as a canonical cortical field theory. We specifically investigated non-dispersive fields that provide a structure for the coding (or representation) of afferent information. Further elaboration of the ensuing neural field theory, including the effect of dispersive forces, could be of importance in the understanding of the cortical processing of information.
Gerald Cooray, Vernon Cooray, Karl Friston (2023). Canonical Cortical Field Theories. , DOI: https://doi.org/10.48550/arxiv.2308.10645.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2308.10645
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access