RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2017

Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression

0 Datasets

0 Files

en
2017
Vol 49 (5)
Vol. 49
DOI: 10.1183/13993003.02006-2016

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Peter J Barnes
Peter J Barnes

Imperial College London

Verified
Antonino Di Stefano
Fabio Luigi Massimo Ricciardolo
Gaetano Caramori
+11 more

Abstract

Toll-like receptors (TLRs) and nucleotide-binding oligomerisation domain (NOD)-like receptors (NLRs) are two major forms of innate immune sensors but their role in the immunopathology of stable chronic obstructive pulmonary disease (COPD) is incompletely studied. Our objective here was to investigate TLR and NLR signalling pathways in the bronchial mucosa in stable COPD.Using immunohistochemistry, the expression levels of TLR2, TLR4, TLR9, NOD1, NOD2, CD14, myeloid differentiation primary response gene 88 (MyD88), Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP), and the interleukin-1 receptor-associated kinases phospho-IRAK1 and IRAK4 were measured in the bronchial mucosa of subjects with stable COPD of different severity (n=34), control smokers (n=12) and nonsmokers (n=12). The bronchial bacterial load of Pseudomonas aeruginosa, Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae was measured by quantitative real-time PCR.TLR4 and NOD1 expression was increased in the bronchial mucosa of patients with severe/very severe stable COPD compared with control subjects. TLR4 bronchial epithelial expression correlated positively with CD4+ and CD8+ cells and airflow obstruction. NOD1 expression correlated with CD8+ cells. The bronchial load of P. aeruginosa was directly correlated, but H. influenzae inversely correlated, with the degree of airflow obstruction. Bacterial load did not correlate with inflammatory cells.Bronchial epithelial overexpression of TLR4 and NOD1 in severe/very severe stable COPD, associated with increased bronchial inflammation and P. aeruginosa bacterial load, may play a role in the pathogenesis of COPD.

How to cite this publication

Antonino Di Stefano, Fabio Luigi Massimo Ricciardolo, Gaetano Caramori, Ian M. Adcock, Kian Fan Chung, Peter J Barnes, Paola Brun, Andrea Leonardi, Filippo Andò, Davide Vallese, Isabella Gnemmi, Luisella Righi, Francesco Cappello, Bruno Balbi (2017). Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. , 49(5), DOI: https://doi.org/10.1183/13993003.02006-2016.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

14

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1183/13993003.02006-2016

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access