0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis letter proposes a novel human-robot co-adaptation framework for robust and accurate user intent recognition, specifically in the context of automatic control in assistance robots such as neural prosthetics and rehabilitation devices empowered by electrophysiological signals. Our goal is to incorporate user adaptability early in the training phase to facilitate both machine recognition and user adaptability, rather than relying solely on brute-force machine learning methods. The proposed framework is featured by applying biofeedback-based user adaptive behavior into model training, while the machine can adapt to those changes through online learning. Specifically, this study focuses on the recognition of two-degree-of-freedom simultaneous and continuous wrist movement intentions based on surface electromyogram (sEMG) array signals, and the performance is tested on twelve able-bodied subjects. The co-adaptive evaluation experiment demonstrates the robust control of this method by introducing sEMG electrode displacement as perturbations. Experimental results show that this method improves the completion time of centre-out tasks by 13% compared to conventional methods (Cohen's d=0.637), and debias 86% of the effect of electrode shift perturbations. This study provides insights into the potential for incorporating human adaptability into machine intelligence to improve user intent recognition and automatic robot control.
Xuhui Hu, Aiguo Song, Hong Zeng, Zhikai Wei, Hanjie Deng, Dapeng Chen (2023). Bridging Human-Robot Co-Adaptation via Biofeedback for Continuous Myoelectric Control. , 8(12), DOI: https://doi.org/10.1109/lra.2023.3330053.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/lra.2023.3330053
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access