RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Boosting Efficiency in Piezo-Photocatalysis Process Using Poled Ba<sub>0.7</sub>Sr<sub>0.3</sub>TiO<sub>3</sub> Nanorod Arrays for Pollutant Degradation and Hydrogen Production

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Boosting Efficiency in Piezo-Photocatalysis Process Using Poled Ba<sub>0.7</sub>Sr<sub>0.3</sub>TiO<sub>3</sub> Nanorod Arrays for Pollutant Degradation and Hydrogen Production

0 Datasets

0 Files

en
2024
DOI: 10.1021/acsami.4c01287

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Weidong Wang
Mingzheng Zhang
Xiaofen Li
+6 more

Abstract

Recently, the combination of the piezoelectric effect in the photocatalytic process, referred to as piezo-photocatalysis, has gained considerable attention as a promising approach for enhancing the degradation of organic pollutants. In this investigation, we studied the piezo-photocatalysis by fabricating arrays of barium strontium titanate (Ba0.7Sr0.3TiO3) nanorods (BST NRs) on a glass substrate as recoverable catalysts. We found that the degradation rate constant k of the rhodamine B solution achieved 0.0447 min-1 using poled BST NRs in the piezo-photocatalytic process, indicating a 2-fold increase in efficiency compared to the photocatalytic process (0.00183 min-1) utilizing the same material. This is mainly ascribed to the generation of the piezopotential in the poled BST NRs under ultrasonic vibration. Moreover, the BST NR array demonstrated a hydrogen (H2) production rate of 411.5 μmol g-1 h-1. In the photoelectrochemical process, the photocurrent density of poled BST NRs achieved 1.97 mA cm-2 at an applied potential of 1.23 V (ERHE (reversible hydrogen electrode)) under ultrasonic vibrations, representing a 1.7-fold increase compared with the poled BST NRs without ultrasonic vibrations. The measurement results from the liquid chromatograph mass spectrometer (LC-MS) demonstrated the formulation of a degradation pathway for rhodamine B molecules. Moreover, ab initio molecular dynamics (AIMD) simulation results demonstrate the dominance of hydroxyl radicals (•OH) rather than superoxide radicals (•O2-) in the degradation process. This study not only benefits the understanding of the principle of the piezo-photocatalytic process but also provides a new perspective for improving the catalytic efficiency for organic pollutants degradation.

How to cite this publication

Weidong Wang, Mingzheng Zhang, Xiaofen Li, Shengwei Zhang, Fang Yu, Shunning Li, Elisabetta Comini, Zhong Lin Wang, Kailiang Ren (2024). Boosting Efficiency in Piezo-Photocatalysis Process Using Poled Ba<sub>0.7</sub>Sr<sub>0.3</sub>TiO<sub>3</sub> Nanorod Arrays for Pollutant Degradation and Hydrogen Production. , DOI: https://doi.org/10.1021/acsami.4c01287.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsami.4c01287

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access