0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe human body has an abundance of available energy from the mechanical movements of walking, jumping, and running. Many devices such as electromagnetic, piezoelectric, and triboelectric energy harvesting devices have been demonstrated to convert body mechanical energy into electricity, which can be used to power various wearable and implantable electronics. However, the complicated structure, high cost of production/maintenance, and limitation of wearing and implantation sites restrict the development and commercialization of the body energy harvesters. Here, we present a body-integrated self-powered system (BISS) that is a succinct, highly efficient, and cost-effective method to scavenge energy from human motions. The biomechanical energy of the moving human body can be harvested through a piece of electrode attached to skin. The basic principle of the BISS is inspired by the comprehensive effect of triboelectrification between soles and floor and electrification of the human body. We have proven the feasibility of powering electronics using the BISS in vitro and in vivo. Our investigation of the BISS exhibits an extraordinarily simple, economical, and applicable strategy to harvest energy from human body movements, which has great potential for practical applications of self-powered wearable and implantable electronics in the future.
Bojing Shi, Zhuo Liu, Qiang Zheng, Jianping Meng, Han Ouyang, Yang Zou, Dongjie Jiang, Xuecheng Qu, Min Yu, Luming Zhao, Yubo Fan, Zhong Lin Wang, Zhou Li (2019). Body-Integrated Self-Powered System for Wearable and Implantable Applications. , 13(5), DOI: https://doi.org/10.1021/acsnano.9b02233.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
13
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.9b02233
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access