0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCurrent generation of drug-eluting stents has significantly improved the outcomes of percutaneous coronary intervention by substantially reducing in-stent restenosis and stent thrombosis. However, a potential limitation of these stents is the permanent presence of a metallic foreign body within the artery, which may cause vascular inflammation, restenosis, thrombosis, and neoatherosclerosis. The permanent stents also indefinitely impair the physiological vasomotor function of the vessel and future potential of grafting the stented segment. Bioresorbable scaffolds (BRSs) have the potential to overcome these limitations as they provide temporary scaffolding and then disappear, liberating the treated vessel from its cage and restoring pulsatility, cyclical strain, physiological shear stress, and mechanotransduction. While a number of BRSs are under development, two devices with substantial clinical data have already received a Conformité Européenne marking. This review article presents the current status of these devices and evaluates the challenges that need to be overcome before BRSs can become the workhorse device in coronary intervention.
Javaid Iqbal, Yoshinobu Onuma, John A. Ormiston, Alexandre Abizaid, R Waksman, Patrick W. Serruys (2013). Bioresorbable scaffolds: rationale, current status, challenges, and future. European Heart Journal, 35(12), pp. 765-776, DOI: 10.1093/eurheartj/eht542.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
European Heart Journal
DOI
10.1093/eurheartj/eht542
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access