0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessToday, drug-eluting metal stents are considered the gold standard for interventional treatment of coronary artery disease. While providing inhibition of neointimal hyperplasia, drug-eluting metal stents have many limitations such as the risk of late and very late stent thrombosis, restriction of vascular vasomotion and chronic local inflammatory reaction due to permanent implantation of a ‘metallic cage’, recognized as a foreign body. Bioresorbable scaffold stents (BRS) are a new solution, which is trying to overcome the limitation of the ‘metallic cage’. This structure provides short-term scaffolding of the vessel and then disappears, leaving nothing behind. The purpose of this review is to present the theoretical rationale for the use of BRS and to outline the clinical outcomes associated with their use in terms of data obtained from RCTs, clinical trials, registries and real life use. We have also tried to answer all questions on this intervention based on available data, with a focus on ABSORB BVS (Abbott Vascular, Santa Clara, USA). We consider that this new technology can be the “magic bullet” to treat coronary artery disease.
Daniel Miron Brie, Peter E. Penson, Maria‐Corina Serban, Peter P. Tóth, Charles A. Simonton, Patrick W. Serruys, Maciej Banach (2016). Bioresorbable scaffold — A magic bullet for the treatment of coronary artery disease?. International Journal of Cardiology, 215, pp. 47-59, DOI: 10.1016/j.ijcard.2016.04.027.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Cardiology
DOI
10.1016/j.ijcard.2016.04.027
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access