0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMicroplastic contamination poses a significant threat to agroecosystem functioning, provoking a move away from the use of conventional oil-based plastics in agriculture, to biodegradable alternatives that may be degraded over a shorter timescale. The impact of these bioplastics on plant and soil health, however, has received relatively little attention. Here, we investigated the effect of soil loading (0.01%, 0.1%, 1% and 10%) of biobased microplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) on soil and plant (Zea mays L.) health and function. We showed that PHBV caused a dose-dependent reduction in plant growth and foliar nitrogen (N) content while untargeted metabolite analysis revealed significant shifts in foliar metabolic function. These results were also reflected in soil, where PHBV led to reduced plant availability of both ammonium and nitrate. Soil 14C-isotope tracing and 16S metabarcoding revealed that PHBV suppressed microbial activity, reduced bacterial diversity and shifted microbial community structure, inducing a major shift in soil metabolic pathways, and thus functioning. Overall, our data suggests that the bioplastic PHBV is not environmentally benign and that contamination levels as low as 0.01% (0.01 mg kg-1) can induce significant short-term changes in both plant and soil microbial functioning, with potential implications for long term agroecosystem health.
Robert W. Brown, David R. Chadwick, Huadong Zang, Martine Graf, Xuejun Liu, Kai Wang, Lucy M. Greenfield, Davey L Jones (2022). Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize. Journal of Hazardous Materials, 441, pp. 129959-129959, DOI: 10.1016/j.jhazmat.2022.129959.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Journal of Hazardous Materials
DOI
10.1016/j.jhazmat.2022.129959
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration