RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bioinspired Self‐Healing Human–Machine Interactive Touch Pad with Pressure‐Sensitive Adhesiveness on Targeted Substrates

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Bioinspired Self‐Healing Human–Machine Interactive Touch Pad with Pressure‐Sensitive Adhesiveness on Targeted Substrates

0 Datasets

0 Files

en
2020
Vol 32 (50)
Vol. 32
DOI: 10.1002/adma.202004290

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Guorong Gao
Fangjian Yang
Fenghua Zhou
+7 more

Abstract

Abstract There is an increasing interest to develop a next generation of touch pads that require stretchability and biocompatibility to allow their integration with a human body, and even to mimic the self‐healing behavior with fast functionality recovery upon damage. However, most touch pads are developed based on stiff and brittle electrodes with the lack of the important nature of self‐healing. Polyzwitterion–clay nanocomposite hydrogels as a soft, stretchable, and transparent ionic conductor with transmittance of 98.8% and fracture strain beyond 1500% are developed, which can be used as a self‐healing human–machine interactive touch pad with pressure‐sensitive adhesiveness on target substrates. A surface‐capacitive touch system is adopted to sense a touched position. Finger positions are perceived during both point‐by‐point touch and continuous moving. Hydrogel touch pads are adhered to curved or flat insulators, with the high‐resolution and self‐healable input functions demonstrated by drawing, writing, and playing electronic games.

How to cite this publication

Guorong Gao, Fangjian Yang, Fenghua Zhou, Jiang He, Wei Lü, Peng Xiao, Huizhen Yan, Caofeng Pan, Tao Chen, Zhong Lin Wang (2020). Bioinspired Self‐Healing Human–Machine Interactive Touch Pad with Pressure‐Sensitive Adhesiveness on Targeted Substrates. , 32(50), DOI: https://doi.org/10.1002/adma.202004290.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.202004290

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access