0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe control of ion transport by responding to stimulus is a necessary condition for the existence of life. Bioinspired iontronics could enable anomalous ion dynamics in the nanoconfined spaces, creating many efficient energy systems and neuromorphic in-sensor computing networks. Unlike traditional electronics based on von Neumann computing architecture, the Boolean logic computing based on the iontronics could avoid complex wiring with higher energy efficiency and programmable neuromorphic logic. Here, a systematic summary on the state of art in bioinspired iontronics is presented and the stimulus from chemical potentials, electric fields, light, heat, piezo and magnetic fields on ion dynamics are reviewed. Challenges and perspectives are also addressed in the aspects of iontronic integrated systems. It is believed that comprehensive investigations in bioinspired ionic control will accelerate the development on more efficient energy and information flow for the futuristic human-machine interface.
Puguang Peng, Qian Han, Jiajin Liu, Zhong Lin Wang, Di Wei (2024). Bioinspired ionic control for energy and information flow. , 15(1), DOI: https://doi.org/10.1080/19475411.2024.2305393.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1080/19475411.2024.2305393
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access