0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe ingeniously complex architectures of biological materials evolved in Nature are a source of inspiration for the design of man-made materials. This has led to a major research field over the past two decades to characterize and model the properties and mechanisms induced by such hierarchical biological structures. However, the inability to manufacture synthetic structural materials incorporating these natural designs in the form of bioinspired materials has been a major “road block”. Here we examine recent processes that can serve to overcome this issue, specifically by infiltrating a metal melt into porous scaffolds of reinforcement. Indeed, the melt infiltration technique offers an effective means for constructing bioinspired architectures in metallic materials, thereby affording the creation of high-performance bioinspired metal composites. The bioinspired architectures, wherein the constituents are mutually interpenetrated in 3D space often in line with specific configurations, have been proven to be effective for combining the property advantages of constituents, retarding the evolution of damage, and playing a toughening role by resisting crack propagation; as such, these effects confer a great potential towards achieving outstanding properties. This review elucidates the prerequisite conditions for melt infiltration processing, and introduces the technical routes for fabricating bioinspired metal composites via melt infiltration by highlighting the different approaches for constructing porous scaffolds of reinforcement. The formation, structure, and mechanical and functional properties of these composites are elaborated in conjunction with the state-of-the-art progress to provide a special focus on the effects of bioinspired architectures. On this basis, the existing challenges and future prospects for bioinspired metal composites are discussed and outlooked. The implementation of bioinspired designs in metallic materials by melt infiltration may afford breakthroughs in material performance with a promising potential towards engineering applications.
Yanyan Liu, Bingqing Chen, Zengqian Liu, Zhefeng Zhang, Robert O. Ritchie (2024). Bioinspired interpenetrating-phase metal composites. Progress in Materials Science, 144, pp. 101281-101281, DOI: 10.1016/j.pmatsci.2024.101281.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Progress in Materials Science
DOI
10.1016/j.pmatsci.2024.101281
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access