RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bioinspired Electron Polarization of Nanozymes with a Human Self‐Generated Electric Field for Cancer Catalytic Therapy

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Bioinspired Electron Polarization of Nanozymes with a Human Self‐Generated Electric Field for Cancer Catalytic Therapy

0 Datasets

0 Files

en
2022
Vol 34 (15)
Vol. 34
DOI: 10.1002/adma.202109568

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Shuncheng Yao
Xinyang Zhao
Xueyu Wang
+6 more

Abstract

Reactive oxygen species (ROS) production efficiencies of the nanocatalysts are highly desired for cancer therapy, but currently the ROS generation efficiency is still far from defecting the tumors. Therefore, improving their ROS generation ability is highly desirable for cancer therapy. Herein, inspired by the electrostatic preorganization effect during the catalysis of natural protein enzymes, a human self-driven catalysis-promoting system, TENG-CatSystem is developed, to improve catalytic cancer therapy. The TENG-CatSystem is mainly composed of three elements: a human self-driven triboelectric nanogenerator (TENG) as the electric field stimulator to provide electric pulses with high biosafety, a nanozyme comprising a 1D ferriporphyrin covalent organic framework coated on a carbon nanotube (COF-CNT) to generate ROS, and a COF-CNT-embedded conductive hydrogel that can be injected into the tumor tissues to increase local accumulation of COF-CNT and decrease the electrical impedances of tissues. Under the human self-generated electric field provided by the wearable TENG, the peroxidase-like activity of the COF-CNT is fourfold higher than that without an electric field. Highly malignant 4T1 breast carcinoma in mice is significantly suppressed using the TENG-CatSystem. The human self-driven TENG-CatSystem not only demonstrates high catalytic ROS generation efficiency for improved cancer therapy, but also offers a new therapeutic mode for self-driven at-home therapy.

How to cite this publication

Shuncheng Yao, Xinyang Zhao, Xueyu Wang, Tian Huang, Yiming Ding, Jiaming Zhang, Zeyu Zhang, Zhong Lin Wang, Linlin Li (2022). Bioinspired Electron Polarization of Nanozymes with a Human Self‐Generated Electric Field for Cancer Catalytic Therapy. , 34(15), DOI: https://doi.org/10.1002/adma.202109568.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.202109568

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access