0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract In addition to the rapid urbanization and industrialization around the world, air pollution due to particulate matter is a substantial threat to human health. A considerable research effort has been devoted to the development of electrospun polymer nanofibers for air filter applications. Among these new technologies, electrostatic charge‐assisted air filtration is a promising technology for removing small particulate matter (PM). In this investigation, biodegradable electrospun poly( l ‐lactic acid) (PLLA) polymer nanofibers are employed for air filter applications. Electrostatic charges generated from the PLLA nanofiber can significantly enhance air filter applications. Compared with a 3M commercial respirator filter, electrospun PLLA fibrous filters exhibit a high efficiency of 99.3%. Even after 6 h of filtration time, the PLLA filtration membrane still exhibits a 15% improvement in quality factor for PM 2.5 particles than the 3M respirator. This is mainly attributed to the electrostatic force generated from the electrospun PLLA nanofibers, which significantly benefit submicron particle absorption. Due to their biodegradability, ease of fabrication, and relatively high efficiency, electrospun PLLA nanofibers show great promise in applications such as air cleaning systems and personal air purifier applications.
Jinxi Zhang, Shaobo Gong, Chenchen Wang, Dae‐Yong Jeong, Zhong Lin Wang, Kailiang Ren (2019). Biodegradable Electrospun Poly(lactic acid) Nanofibers for Effective PM 2.5 Removal. , 304(10), DOI: https://doi.org/10.1002/mame.201900259.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/mame.201900259
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access