0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAmendment of soil with biochar induces a shift in microbial community structure and promotes faster mineralization of soil organic carbon (SOC), thus offsetting C sequestration effects. Whether biochar induces losses of labile or persistent SOC pools remains largely unknown, and the responsible decomposers await identification. Towards addressing these ends, a C3 soil was amended with Biochar500 or Biochar600 (pyrolyzed at 500 °C and 600 °C, respectively) produced from a C4-maize feedstock and incubated for 28 days. Combination of stable isotope 13C techniques, high-throughput sequencing and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allowed changes in soil chemodiversity and biodiversity, as well as their interactive effects on biochar induced SOC mineralization to be elucidated. Results indicated that: i) biochar addition shifted the bacterial community towards dominance of Gemmatimonadetes, Bacteroidia, Alphaproteobacteria and Gammaproteobacteria classes, and coincidence with recalcitrant C components and neutral pH soil; ii) the persistent DOM components (such as condensed aromatics and tannin) were depleted in biochar amended soils, while labile DOM components (such as unsaturated hydrocarbons, lipids, carbohydrates and proteins/amino sugar) were relatively enriched, and; iii) Biochar600 promoted additional soil derived CO2 carbon loss over 28 days (93 mg C kg−1 soil). Collectively, these results suggested that the majority of soil derived CO2 efflux in biochar amended soils originated from recalcitrant components that were mineralized by the persistent organic matter decomposers. This research highlights the significance of biochar responsive taxa in changes of DOM chemodiversity and potential loss of SOC via mineralization.
Ling Lu, Yu Luo, Bin Jiang, Jitao Lv, Chunmei Meng, Yuhong Liao, Brian J. Reid, Fan Ding, Zhijiang Lu, Yakov Kuzyakov, Jianming Xu (2022). Biochar induces mineralization of soil recalcitrant components by activation of biochar responsive bacteria groups. Soil Biology and Biochemistry, 172, pp. 108778-108778, DOI: 10.1016/j.soilbio.2022.108778.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2022.108778
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration