RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Biochar induces mineralization of soil recalcitrant components by activation of biochar responsive bacteria groups

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Biochar induces mineralization of soil recalcitrant components by activation of biochar responsive bacteria groups

0 Datasets

0 Files

English
2022
Soil Biology and Biochemistry
Vol 172
DOI: 10.1016/j.soilbio.2022.108778

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Ling Lu
Yu Luo
Bin Jiang
+8 more

Abstract

Amendment of soil with biochar induces a shift in microbial community structure and promotes faster mineralization of soil organic carbon (SOC), thus offsetting C sequestration effects. Whether biochar induces losses of labile or persistent SOC pools remains largely unknown, and the responsible decomposers await identification. Towards addressing these ends, a C3 soil was amended with Biochar500 or Biochar600 (pyrolyzed at 500 °C and 600 °C, respectively) produced from a C4-maize feedstock and incubated for 28 days. Combination of stable isotope 13C techniques, high-throughput sequencing and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allowed changes in soil chemodiversity and biodiversity, as well as their interactive effects on biochar induced SOC mineralization to be elucidated. Results indicated that: i) biochar addition shifted the bacterial community towards dominance of Gemmatimonadetes, Bacteroidia, Alphaproteobacteria and Gammaproteobacteria classes, and coincidence with recalcitrant C components and neutral pH soil; ii) the persistent DOM components (such as condensed aromatics and tannin) were depleted in biochar amended soils, while labile DOM components (such as unsaturated hydrocarbons, lipids, carbohydrates and proteins/amino sugar) were relatively enriched, and; iii) Biochar600 promoted additional soil derived CO2 carbon loss over 28 days (93 mg C kg−1 soil). Collectively, these results suggested that the majority of soil derived CO2 efflux in biochar amended soils originated from recalcitrant components that were mineralized by the persistent organic matter decomposers. This research highlights the significance of biochar responsive taxa in changes of DOM chemodiversity and potential loss of SOC via mineralization.

How to cite this publication

Ling Lu, Yu Luo, Bin Jiang, Jitao Lv, Chunmei Meng, Yuhong Liao, Brian J. Reid, Fan Ding, Zhijiang Lu, Yakov Kuzyakov, Jianming Xu (2022). Biochar induces mineralization of soil recalcitrant components by activation of biochar responsive bacteria groups. Soil Biology and Biochemistry, 172, pp. 108778-108778, DOI: 10.1016/j.soilbio.2022.108778.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2022.108778

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration