RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Biochar and Microplastics Affect Microbial Necromass Accumulation and CO<sub>2</sub> and N<sub>2</sub>O Emissions from Soil

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Biochar and Microplastics Affect Microbial Necromass Accumulation and CO<sub>2</sub> and N<sub>2</sub>O Emissions from Soil

0 Datasets

0 Files

English
2023
ACS ES&T Engineering
Vol 4 (3)
DOI: 10.1021/acsestengg.3c00401

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Yalan Chen
Zhibo Wang
Ke Sun
+7 more

Abstract

Biochar (BC) application represents a promising soil management strategy for mitigating CO2 and N2O emissions; however, as concurrent soil pollutants, microplastics may interact with BC. In a 3 month microcosm experiment (25 °C, 60% WHC), we investigated soil C and N dynamics following the addition of polyethylene (PE) microplastics (1 and 5%) to a Calcaric Fluvisol already amended with BC for 1 month. BC alone reduced CO2 and N2O emissions by 11 and 3%, respectively, while PE reduced CO2 and N2O emissions by 11–26 and 4–14%, respectively. The suppression of CO2 emissions by BC and PE microplastics was due to reduced dissolved organic matter (DOM) content as well as increased DOM aromaticity, all of which led to diminished bacterial biomass and β-N-acetyl-glucosaminidase activity. BC decreased N2O emissions by suppressing the nirS and nirK genes while increasing the level of the nifH gene; PE decreased N2O emissions primarily by decreasing the level of the nirK gene. BC alone decreased the microbial necromass carbon content by 35%, primarily due to the suppression of bacterial abundance, thus leading to reduced efficiency in bacterial necromass production. PE had a modest impact, decreasing microbial necromass C by 8–11% in BC-free soil, mainly due to dilution effects. However, in BC-treated soil, PE had a profound influence, as it markedly increased the microbial necromass C by 33–61%. The microbial necromass increased due to the disruption of aggregates, which provided better protection against microbial necromass and a reduction in β-N-acetyl-glucosaminidase activity, which is responsible for necromass mineralization. In summary, the interactive effects of BC and PE microplastics on microbial necromass accumulation, as well as CO2 and N2O emissions, are mainly based on microbial (especially bacterial) necromass and DOM decomposition as well as aggregate destruction. Our findings offer valuable insights for the adaptation and enhancement of soil carbon management strategies in response to the challenge of microplastic contamination.

How to cite this publication

Yalan Chen, Zhibo Wang, Ke Sun, Jiaqi Ren, Yue Xiao, Yang Li, Bo Gao, Anna Gunina, Abeer S. Aloufi, Yakov Kuzyakov (2023). Biochar and Microplastics Affect Microbial Necromass Accumulation and CO<sub>2</sub> and N<sub>2</sub>O Emissions from Soil. ACS ES&T Engineering, 4(3), pp. 603-614, DOI: 10.1021/acsestengg.3c00401.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

ACS ES&T Engineering

DOI

10.1021/acsestengg.3c00401

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration