0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBiochar (BC) application represents a promising soil management strategy for mitigating CO2 and N2O emissions; however, as concurrent soil pollutants, microplastics may interact with BC. In a 3 month microcosm experiment (25 °C, 60% WHC), we investigated soil C and N dynamics following the addition of polyethylene (PE) microplastics (1 and 5%) to a Calcaric Fluvisol already amended with BC for 1 month. BC alone reduced CO2 and N2O emissions by 11 and 3%, respectively, while PE reduced CO2 and N2O emissions by 11–26 and 4–14%, respectively. The suppression of CO2 emissions by BC and PE microplastics was due to reduced dissolved organic matter (DOM) content as well as increased DOM aromaticity, all of which led to diminished bacterial biomass and β-N-acetyl-glucosaminidase activity. BC decreased N2O emissions by suppressing the nirS and nirK genes while increasing the level of the nifH gene; PE decreased N2O emissions primarily by decreasing the level of the nirK gene. BC alone decreased the microbial necromass carbon content by 35%, primarily due to the suppression of bacterial abundance, thus leading to reduced efficiency in bacterial necromass production. PE had a modest impact, decreasing microbial necromass C by 8–11% in BC-free soil, mainly due to dilution effects. However, in BC-treated soil, PE had a profound influence, as it markedly increased the microbial necromass C by 33–61%. The microbial necromass increased due to the disruption of aggregates, which provided better protection against microbial necromass and a reduction in β-N-acetyl-glucosaminidase activity, which is responsible for necromass mineralization. In summary, the interactive effects of BC and PE microplastics on microbial necromass accumulation, as well as CO2 and N2O emissions, are mainly based on microbial (especially bacterial) necromass and DOM decomposition as well as aggregate destruction. Our findings offer valuable insights for the adaptation and enhancement of soil carbon management strategies in response to the challenge of microplastic contamination.
Yalan Chen, Zhibo Wang, Ke Sun, Jiaqi Ren, Yue Xiao, Yang Li, Bo Gao, Anna Gunina, Abeer S. Aloufi, Yakov Kuzyakov (2023). Biochar and Microplastics Affect Microbial Necromass Accumulation and CO<sub>2</sub> and N<sub>2</sub>O Emissions from Soil. ACS ES&T Engineering, 4(3), pp. 603-614, DOI: 10.1021/acsestengg.3c00401.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
ACS ES&T Engineering
DOI
10.1021/acsestengg.3c00401
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration