0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The behaviour and design of homogeneous and hybrid high strength steel (HSS) beams are addressed in the present study. Six in‐plane three‐point bending tests on three different welded I‐sections were first conducted. Following the experimental investigation, a finite element (FE) modelling programme was performed, which included a validation study confirming the accuracy of the developed FE models in replicating the flexural behaviour of HSS welded I‐section beams, and a parametric study generating additional FE data on HSS welded I‐section beams over a broader range of cross‐sectional slendernesses, steel grades and loading configurations. Then, the suitability of the current Eurocode 3 cross‐section slenderness limits for HSS homogeneous and hybrid welded I‐sections in bending were evaluated. It is shown that the current Eurocode Class 2 and Class 3 slenderness limits are suitable for the classification of the outstand flange (in compression) and internal web (in bending) elements of both HSS homogeneous and hybrid welded I‐sections subjected to major axis bending, while stricter Class 1 slenderness limits are considered necessary to achieve sufficient rotation capacity for plastic design. The findings indicate that plastic design can be used for HSS structures, provided the proposed stricter Class 1 slenderness limits are employed. Further work is underway to develop advanced design approaches using second‐order inelastic analysis with strain limits for HSS welded I‐section members.
Yufei Zhu, Xiang Yun, Leroy Gardner (2023). Behaviour, finite element modelling and design of high strength steel homogeneous and hybrid welded I‐section beams. , 6(3-4), DOI: https://doi.org/10.1002/cepa.2340.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/cepa.2340
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access