RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils

0 Datasets

0 Files

English
2021
European Journal of Soil Biology
Vol 104
DOI: 10.1016/j.ejsobi.2021.103313

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Liyang Yang
Romain L. Barnard
Yakov Kuzyakov
+1 more

Abstract

Bacterial communities play key roles in maintaining ecosystem multifunctionality. With increasing land use intensity, soil biogeochemical and microbial characteristics change significantly and may affect the multifunctionality of ecosystems. The relationship between soil microbial communities and resistance of multiple ecosystem functions under land-use change has not previously been assessed in the karst regions. Soils from four karst ecosystems (primary forest, secondary forest, abandoned land and cultivated land) were analyzed for microbial communities as predictor of multifunctional resistance to land use change by using high-throughput sequencing, structural equation modeling and random forest modeling. We evaluated the multifunctional resistance of soil ecosystems by measuring indicators related to soil carbon, nitrogen and phosphorus cycling. The resistance of Proteobacteria was the highest in the secondary forest, and that of Verrucomicrobia was the highest in the abandoned and cultivated lands. With increasing land-use intensity, C-cycling functional resistance decreased by 77% and nitrogen functional resistance increased by 17% in the abandoned land, compared with those in the secondary forest. Bacterial communities had the largest direct positive effect on multifunctional resistance and N-related functional resistance. Among bacterial communities, Verrucomicrobia and Chloroflexi were the two most important phyla that affected soil multifunctional resistance. Armatimonadetes_unclassified, Chloroflexia and OPB35_soil_group were the best predictor of total organic carbon, total nitrogen and total phosphorus content, respectively. Our results suggested strong links between microbial community composition and multifunctional resistance in various karst ecosystems, and provided insights into the importance of microbial community composition in the recovery of ecosystems following human intervention.

How to cite this publication

Liyang Yang, Romain L. Barnard, Yakov Kuzyakov, Jing Tian (2021). Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils. European Journal of Soil Biology, 104, pp. 103313-103313, DOI: 10.1016/j.ejsobi.2021.103313.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

European Journal of Soil Biology

DOI

10.1016/j.ejsobi.2021.103313

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access