RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Atomic and Electronic Structure of Defects in hBN: Enhancing Single-Defect Functionalities

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Atomic and Electronic Structure of Defects in hBN: Enhancing Single-Defect Functionalities

0 Datasets

0 Files

English
2024
ACS Nano
Vol 18 (35)
DOI: 10.1021/acsnano.4c03640

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Zhizhan Qiu
Kristina Vaklinova
Pengru Huang
+6 more

Abstract

Defect centers in insulators play a critical role in creating important functionalities in materials: prototype qubits, single-photon sources, magnetic field probes, and pressure sensors. These functionalities are highly dependent on their midgap electronic structure and orbital/spin wave function contributions. However, in most cases, these fundamental properties remain unknown or speculative due to the defects being deeply embedded beneath the surface of highly resistive host crystals, thus impeding access through surface probes. Here, we directly inspected the atomic and electronic structures of defects in thin carbon-doped hexagonal boron nitride (hBN:C) by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Such investigation adds direct information about the electronic midgap states to the well-established photoluminescence response (including single-photon emission) of intentionally created carbon defects in the most commonly investigated van der Waals insulator. Our joint atomic-scale experimental and theoretical investigations reveal two main categories of defects: (1) single-site defects manifesting as donor-like states with atomically resolved structures observable via STM and (2) multisite defect complexes exhibiting a ladder of empty and occupied midgap states characterized by distinct spatial geometries. Combining direct probing of midgap states through tunneling spectroscopy with the inspection of the optical response of insulators hosting specific defect structures holds promise for creating and enhancing functionalities realized with individual defects in the quantum limit. These findings underscore not only the versatility of hBN:C as a platform for quantum defect engineering but also its potential to drive advancements in atomic-scale optoelectronics.

How to cite this publication

Zhizhan Qiu, Kristina Vaklinova, Pengru Huang, Magdalena Grzeszczyk, Kenji Watanabe, Takashi Taniguchi, Konstantin ‘kostya’ Novoselov, Jiong Lu, Maciej Koperski (2024). Atomic and Electronic Structure of Defects in hBN: Enhancing Single-Defect Functionalities. ACS Nano, 18(35), pp. 24035-24043, DOI: 10.1021/acsnano.4c03640.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

ACS Nano

DOI

10.1021/acsnano.4c03640

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access