0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessArsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2–21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils.
Jacqueline L. Stroud, Mujib Khan, Gareth J. Norton, MR Islam, Tapash Dasgupta, Yong‐Guan Zhu, Adam H. Price, Andrew A. Meharg, S. P. McGrath, Fang-jie Zhao (2011). Assessing the Labile Arsenic Pool in Contaminated Paddy Soils by Isotopic Dilution Techniques and Simple Extractions. Environmental Science & Technology, 45(10), pp. 4262-4269, DOI: 10.1021/es104080s.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/es104080s
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access