0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessGrassland degradation decreases ecosystem productivity and diminishes soil biodiversity, leading to the loss of beneficial microorganisms. Arbuscular mycorrhizal fungi (AMF) play a critical role in ecosystem functioning, being a key link between plant and microbial communities, soil, and vegetation. Here, we evaluated the potential of increasing the productivity of degraded grassland by AMF inoculation. A gradient of soil biodiversity: complete sterilization, low, moderate, and high biodiversity was established using the dilution-to-extinction approach. Grassland microcosms under greenhouse conditions were inoculated with three AMF taxa in an increasing diversity: no AMF, single AMF taxa, and all three AMF taxa together. The loss of soil biodiversity decreased plant community productivity, primarily due to reduced biomass of legumes and non-N2-fixing forbs. AMF inoculation raised plant community productivity by 190%, mainly attributed to the greater biomass of legumes and non-N2-fixing forbs. This positive effect of AMF inoculation was particularly pronounced on soils with low biodiversity, where soil mutualists were absent. The biomass of grasses remained independent of AMF inoculation. This differential responsiveness to mycorrhiza was mainly due to the distinctive plant traits of each plant functional group. Inoculating with a single AMF was more beneficial for plant biomass production than inoculation with multiple AMF under lower levels of soil biodiversity, probably due to high functional redundancy among AMF taxa. In conclusion, AMF inoculation reduced the adverse impact of soil degradation and biodiversity loss on plant biomass and vegetation development, highlighting the key roles and importance of AMF for grassland restoration.
Jiqiong Zhou, Yingying Su, Xiangjun Li, Yakov Kuzyakov, Pengsen Wang, Jinchao Gong, Xuxu Li, Lin Liu, Xinquan Zhang, Congyu Ma, Xiao Ma, Ting Huang, Yanfu Bai, Feida Sun (2023). Arbuscular mycorrhizae mitigate negative impacts of soil biodiversity loss on grassland productivity. Journal of Environmental Management, 349, pp. 119509-119509, DOI: 10.1016/j.jenvman.2023.119509.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
14
Datasets
0
Total Files
0
Language
English
Journal
Journal of Environmental Management
DOI
10.1016/j.jenvman.2023.119509
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access