0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract This article describes an aqueous method for the synthesis of Pd seeds with a single‐crystal structure and a uniform diameter of 3 nm and their use for the growth of Pd nanocrystals with a variety of shapes. We have also investigated the effects of a number of parameters, including the temperature, reducing power of the reductant, and capping agent on the reduction rate of a Pd precursor, and thus the final size, size distribution, and morphology of the Pd seeds. By taking advantage of the coordination effect of Br − ions with Pd 2+ ions and their selective adsorption on the Pd(100) surface, Pd nanocrystals with a number of distinct shapes could be conveniently produced by varying the concentration of KBr added into the growth solution. This work provides a general and facile method for the green synthesis of Pd nanocrystals with controlled shapes, especially for the preparation of Pd nanocrystals with sizes in the sub‐10 nm regime.
Cun Zhu, Jie Zeng, Ping Lü, Jingyue Liu, Zhongze Gu, Younan Xia (2013). Aqueous‐Phase Synthesis of Single‐Crystal Pd Seeds 3 nm in Diameter and Their Use for the Growth of Pd Nanocrystals with Different Shapes. , 19(16), DOI: https://doi.org/10.1002/chem.201203787.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/chem.201203787
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access