RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Application of deep learning algorithm for estimating stand volume in South Korea

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Application of deep learning algorithm for estimating stand volume in South Korea

0 Datasets

0 Files

English
2022
Journal of Applied Remote Sensing
Vol 16 (02)
DOI: 10.1117/1.jrs.16.024503

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Dmitry Schepaschenko
Dmitry Schepaschenko

Institution not specified

Verified
Sungeun Cha
Hyun‐Woo Jo
Moonil Kim
+7 more

Abstract

Current estimates of stand volume for South Korean forests are mostly derived from expensive field data. Techniques that allow reducing the amount of ground data with reliable accuracy would decrease the cost and time. The fifth National Forest Inventory (NFI) has been conducted annually for all forest areas in South Korea from 2006 to 2010 and using these data we can make a model for estimating the stand volume of forests. The purpose of this study is to test deep learning whether it is available for measurement of stand volume with satellite imageries and geospatial information. The spatial distribution of the stand volume of South Korean forests was predicted with the convolutional neural networks (CNNs) algorithm. NFI data were randomly sampled for training from 90% to 10%, with 10% decrement, and the rest of the area was estimated using satellite imagery and geospatial information. Consequently, we found that the error rate of total stand volume was <5 % when using over 17% of NFI data for training (R2 = 0.96). We identified that using CNNs model based on satellite imageries and geospatial information is considered to be suitable for estimating the national level of stand volume. This study is meaningful in that we (1) estimated the stand volume using a deep learning algorithm with high accuracy compare with previous studies, (2) identified the minimum training rate of the CNNs model to estimate the stand volume of South Korean forest, and (3) identified the effect of diameter class on error hotspots in stand volume estimates through clustering analysis.

How to cite this publication

Sungeun Cha, Hyun‐Woo Jo, Moonil Kim, Cholho Song, Halim Lee, Eunbeen Park, Joongbin Lim, Dmitry Schepaschenko, А. Shvidenko, Woo‐Kyun Lee (2022). Application of deep learning algorithm for estimating stand volume in South Korea. Journal of Applied Remote Sensing, 16(02), DOI: 10.1117/1.jrs.16.024503.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

Journal of Applied Remote Sensing

DOI

10.1117/1.jrs.16.024503

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access