0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCasing deformation is evident during the development of shale oil and gas wells in the Sichuan and Junggar Basins in China. Their casing deformation characteristics, distribution law of deformation points, and main controlling factors were analyzed. According to the analysis results, shear is the main cause of casing deformation of shale oil and gas wells in the Sichuan and Junggar Basins in China and has the characteristics of “a dense heel end and a sparse toe end”. Faults account for 75% of casing deformation points, and fault slip caused by multi-stage fracturing is the primary factor responsible. The calculation model for fault slip that takes into account fracturing fluid invasion was established, and the dynamic variation law of fault slip was clarified: the fracturing fluid intruded into the fault, the relative dislocation of the damaged fault was caused by gravity, and the fault slippage was caused by the increase in fault activation length. This resulted in a linear increase in fault slippage, and the slippage reached its maximum when the fracturing fluid completely penetrated the fault and reached the fault boundary. The slip amount has a positive correlation with the fault length and the in situ stress difference; it increases first and then decreases with the increase in the fault dip angle. The slip amount reaches its maximum when the fault dip angle reaches 45°.
Zongyu Lu, Wei Lian, Jun Li, Nenghao Wang (2024). Analysis of Influencing Factors of Slippage and the Dynamic Process of Fault Slip Caused by Multi-Stage Fracturing. , 12(3), DOI: https://doi.org/10.3390/pr12030448.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/pr12030448
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access