RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2007

Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy

0 Datasets

0 Files

English
2007
The Journal of Chemical Physics
Vol 127 (16)
DOI: 10.1063/1.2770706

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Taras Petrenko
Frank Neese

Abstract

A general method for the simulation of absorption (ABS) and fluorescence band shapes, resonance-Raman (rR) spectra, and excitation profiles based on the time-dependent theory of Heller is discussed. The following improvements to Heller's theory have been made: (a) derivation of new recurrence relations for the time-dependent wave packet overlap in the case of frequency changes between the ground and electronically excited states, (b) a new series expansion that gives insight into the nature of Savin's preresonance approximation, (c) incorporation of inhomogeneous broadening effects into the formalism at no additional computational cost, and (d) derivation of a new and simple short-time dynamics based equation for the Stokes shift that remains valid in the case of partially resolved vibrational structure. Our implementation of the time-dependent theory for the fitting of experimental spectra and the simulation of model spectra as well as the quantum mechanical calculation of the model parameters is discussed. The implementation covers all electronic structure approaches which are able to deliver ground- and excited-state energies and transition dipole moments. The technique becomes highly efficient if analytic gradients for the excited-state surface are available. In this case, the computational cost for the simultaneous prediction of ABS, fluorescence, and rR spectra is equal to that of a single excited-state geometry optimization step while the limitations of the short-time dynamics approximation are completely avoided. As a test case we discuss the well-known case of the strongly allowed 1 (1)A(g) --> 1 (1)B(u) transition in 1,3,5 trans-hexatriene in detail using method ranging from simple single-reference treatments to elaborate multireference electronic structure approaches. At the highest computational level, the computed spectra show the best agreement that has so far been obtained with quantum chemical methods for this problem.

How to cite this publication

Taras Petrenko, Frank Neese (2007). Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. The Journal of Chemical Physics, 127(16), DOI: 10.1063/1.2770706.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2007

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

The Journal of Chemical Physics

DOI

10.1063/1.2770706

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration