RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes

0 Datasets

0 Files

English
2019
Soil Biology and Biochemistry
Vol 141
DOI: 10.1016/j.soilbio.2019.107685

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Lichao Fan
Michaela Dippold
Tida Ge
+4 more

Abstract

The anaerobic oxidation of methane (AOM) in marine ecosystems is ubiquitous and largely coupled to sulfate reduction. In contrast, the role of AOM in terrestrial environments and the dominant electron acceptors driving terrestrial AOM needs deeper understanding. Submerged rice paddies with intensive CH4 production have a high potential for AOM, which can be important for greenhouse gas mitigation strategies. Here, we used 13CH4 to quantify the AOM rates in paddy soils under organic (Pig manure, Biochar) and mineral (NPK) fertilization. Alternative-to-oxygen electron acceptors for CH4 oxidation, including Fe3+, NO3 −, SO4 2−, and humic acids, were examined and their potential for CH4 mitigation from rice paddies was assessed by 13CH4 oxidation to 13CO2 under anoxic conditions. During 84 days of anaerobic incubation, the cumulative AOM (13CH4-derived CO2) reached 0.15–1.3 μg C g-1 dry soil depending on fertilization. NO3- was the most effective electron acceptor, yielding an AOM rate of 0.80 ng C g-1 dry soil h-1 under Pig manure. The role of Fe3+ in AOM remained unclear, whereas SO42- inhibited AOM but strongly stimulated the production of unlabeled CO2, indicating intensive sulfate-induced decomposition of organic matter. Humic acids were the second most effective electron acceptor for AOM, but increased methanogenesis by 5–6 times in all fertilization treatments. We demonstrated for the first time that organic electron acceptors (humic acids) are among the key AOM drivers and are crucial in paddy soils. The most pronounced AOM in paddy soils occurred under Pig manure, followed by Control and NPK, while AOM was the lowest under Biochar. We estimate that nitrate (nitrite)-dependent AOM in paddy fields globally consumes ~3.9 Tg C–CH4 yr-1, thereby offsetting the global CH4 emissions by ~10–20%. Thus, from a broader agroecological perspective, the organic and mineral fertilizers control an important CH4 sink under anaerobic conditions in submerged ecosystems. Appropriate adjustments of soil fertilization management strategies would therefore help to decrease the net CH4 flux to the atmosphere and hence the global warming.

How to cite this publication

Lichao Fan, Michaela Dippold, Tida Ge, Jinshui Wu, Volker Thiel, Yakov Kuzyakov, Maxim Dorodnikov (2019). Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes. Soil Biology and Biochemistry, 141, pp. 107685-107685, DOI: 10.1016/j.soilbio.2019.107685.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Soil Biology and Biochemistry

DOI

10.1016/j.soilbio.2019.107685

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access