Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPurpose Regular monitoring of bacteria, especially Escherichia coli, in wastewater is crucial to ensure the maintenance of public health. Amperometric detection proves to be a fast, sensitive and economically viable solution for E. coli enumeration. This paper reported a prototype amperometric sensor based on PANI-ZnO-NiO nanocomposite thin films prepared by sol–gel method and irradiated with gamma ray. The purpose of this study is to investigate the sensor performance of PANI-ZnO-NiO nanocomposite thin films to detect E. coli in water. Design/methodology/approach The films were varied with different compositions of ZnO and NiO by using the formula PANI-(ZnO)1-x-(NiO)x, with x = 0.2, 0.4, 0.6 and 0.8. PANI-ZnO-NiO nanocomposite thin films were characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM) to study the crystallinity and surface morphology of the films. The sensor performance was conducted using the current–voltage (I-V) measurement by testing the films in clean water and E. coli solution. Findings XRD diffractograms show the peaks of ZnO (1 0 0) and NiO (1 0 2). AFM analysis shows the surface roughness, and the grain size of PANI-ZnO-NiO thin films decreases when the concentration ratios of NiO increased. I-V curves show the difference in current flow, where the current in E. coli solution is higher than the clean water. Originality/value PANI-(ZnO)1-x-(NiO)x nanocomposite thin film with the highest concentration of ZnO performed the highest sensitivity among the other concentrations, which can be used to indicate the presence of E. coli bacteria in water.
Huda Abdullah, Norshafadzila Mohammad Naim, Aidil Abdul Hamid, Mohd Hafiz Dzarfan Othman, Vidhya Selvanathan Selvanathan, Wing Fen Yap, Seri Mastura Mustaza, Kok Seng Shum (2023). An amperometric sensor based on gamma-irradiated PANI-ZnO-NiO nanocomposite thin films for Escherichia coli detection in water. Pigment & Resin Technology, pp. 1-8, DOI: 10.1108/PRT-04-2022-0046.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Pigment & Resin Technology
DOI
10.1108/PRT-04-2022-0046
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access