0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA zeroth-order Hamiltonian based on Koopmans matrices for complete active space second-order perturbation theory (CASPT2) is presented. This Hamiltonian involves three types of Fock matrices. The original CASPT2 Fock matrix is retained for excitation classes where the excitation does not change the number of electrons in the complete active space (CAS). For excitation classes involving a change in the number of electrons in the CAS, two alternative Fock matrices corresponding to either positive or negative ionization of the CAS are introduced. These are constructed such that they exactly reproduce the Koopmans matrices for a singly ionized CAS. Test calculations indicate that the method gives better excitation energies than CASPT2 without using empirical parameters, for example, the ionization potential-electron affinity shift, which is also designed to improve excitation energies. The method is also less prone to intruder states than conventional CASPT2. Moreover, the dissociation curve for the chromium dimer looks much more reasonable than the one obtained with conventional CASPT2.
Christian Kollmar, Kantharuban Sivalingam, Frank Neese (2020). An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. The Journal of Chemical Physics, 152(21), DOI: 10.1063/5.0010019.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
The Journal of Chemical Physics
DOI
10.1063/5.0010019
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access