0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground Physical activity (PA) interventions typically include components or doses that are static across participants. Adaptive interventions are dynamic; components or doses change in response to short-term variations in participant's performance. Emerging theory and technologies make adaptive goal setting and feedback interventions feasible. Objective To test an adaptive intervention for PA based on Operant and Behavior Economic principles and a percentile-based algorithm. The adaptive intervention was hypothesized to result in greater increases in steps per day than the static intervention. Methods Participants (N = 20) were randomized to one of two 6-month treatments: 1) static intervention (SI) or 2) adaptive intervention (AI). Inactive overweight adults (85% women, M = 36.9±9.2 years, 35% non-white) in both groups received a pedometer, email and text message communication, brief health information, and biweekly motivational prompts. The AI group received daily step goals that adjusted up and down based on the percentile-rank algorithm and micro-incentives for goal attainment. This algorithm adjusted goals based on a moving window; an approach that responded to each individual's performance and ensured goals were always challenging but within participants' abilities. The SI group received a static 10,000 steps/day goal with incentives linked to uploading the pedometer's data. Results A random-effects repeated-measures model accounted for 180 repeated measures and autocorrelation. After adjusting for covariates, the treatment phase showed greater steps/day relative to the baseline phase (p<.001) and a group by study phase interaction was observed (p = .017). The SI group increased by 1,598 steps/day on average between baseline and treatment while the AI group increased by 2,728 steps/day on average between baseline and treatment; a significant between-group difference of 1,130 steps/day (Cohen's d = .74). Conclusions The adaptive intervention outperformed the static intervention for increasing PA. The adaptive goal and feedback algorithm is a "behavior change technology" that could be incorporated into mHealth technologies and scaled to reach large populations. Trial Registration ClinicalTrials.gov NCT01793064
Marc A. Adams, James Sallis, Gregory J. Norman, Melbourne F. Hovell, Eric B. Hekler, Elyse Perata (2013). An Adaptive Physical Activity Intervention for Overweight Adults: A Randomized Controlled Trial. , 8(12), DOI: https://doi.org/10.1371/journal.pone.0082901.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1371/journal.pone.0082901
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access