0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTobacco (Nicotiana tabacum) is a cadmium (Cd) accumulator, and smoking is a major source of Cd exposure. In the present study, we identified two tobacco cultivars with contrasting phenotypes of Cd and manganese (Mn) accumulation in both hydroponic and soil pot experiments. Physiological experiments showed that the two cultivars differed in Cd uptake, but not in Cd translocation from roots to shoots. A homolog of OsNramp5 (natural resistance-associated macrophage protein 5), NtNramp5, was isolated from both cultivars. There was no significant difference in the expression level of NtNramp5 in the roots between the two cultivars. Sequence analysis revealed that the low Cd/Mn-accumulating cultivar possesses an NtNramp5 allele with a predicted mutation for early translation termination, resulting in a truncated protein missing 104 amino acids in the C-terminus of the full-length NtNramp5 found in the high Cd/Mn-accumulating cultivar. Both proteins were found to be localized to the plasma membrane. Heterologous expression of the two alleles of NtNramp5 in yeast showed that the full-length protein had transport activities for both Mn and Cd, whereas the truncated protein had no transport activity for Mn and a weak transport activity for Cd. These results suggest that NtNramp5 is a transporter for Mn and Cd, and the allelic variation in the coding region of NtNramp5 probaby explains the cultivar difference in Cd and Mn accumulation.
Zhong Tang, Hailin Cai, Jie Li, Yanling Lv, Wenwen Zhang, Fang-jie Zhao (2017). Allelic Variation of NtNramp5 Associated with Cultivar Variation in Cadmium Accumulation in Tobacco. Plant and Cell Physiology, 58(9), pp. 1583-1593, DOI: 10.1093/pcp/pcx087.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Plant and Cell Physiology
DOI
10.1093/pcp/pcx087
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access